- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Klaus, Marcus (2)
-
Klug, Jennifer (2)
-
Laas, Alo (2)
-
Vanni, Michael_J (2)
-
de_Eyto, Elvira (2)
-
Adrian, Rita (1)
-
Alfonso, María_Belén (1)
-
Austnes, Kari (1)
-
Bansal, Sheel (1)
-
Baron, Jill_S (1)
-
Bertolet, Brittni_L (1)
-
Brothers, Soren (1)
-
Bruesewitz, Denise_A (1)
-
Chandra, Sudeep (1)
-
Chou, Hsiu‐Mei (1)
-
Colom‐Montero, William (1)
-
Corman, Jessica_R (1)
-
Couture, Raoul‐Marie (1)
-
Culpepper, Joshua (1)
-
Farragher, Matthew_J (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Understanding controls on primary productivity is essential for describing ecosystems and their responses to environmental change. In lakes, pelagic gross primary productivity (GPP) is strongly controlled by inputs of nutrients and dissolved organic matter. Although past studies have developed process models of this nutrient‐color paradigm (NCP), broad empirical tests of these models are scarce. We used data from 58 globally distributed, mostly temperate lakes to test such a model and improve understanding and prediction of the controls on lake primary production. The model includes three state variables–dissolved phosphorus, terrestrial dissolved organic carbon (DOC), and phytoplankton biomass–and generates realistic predictions for equilibrium rates of pelagic GPP. We calibrated our model using a Bayesian data assimilation technique on a subset of lakes where DOC and total phosphorus (TP) loads were known. We then asked how well the calibrated model performed with a larger set of lakes. Revised parameter estimates from the updated model aligned well with existing literature values. Observed GPP varied nonlinearly with both inflow DOC and TP concentrations in a manner consistent with increasing light limitation as DOC inputs increased and decreasing nutrient limitation as TP inputs increased. Furthermore, across these diverse lake ecosystems, model predictions of GPP were highly correlated with observed values derived from high‐frequency sensor data. The GPP predictions using the updated parameters improved upon previous estimates, expanding the utility of a process model with simplified assumptions for water column mixing. Our analysis provides a model structure that may be broadly useful for understanding current and future patterns in lake primary production.more » « less
-
Corman, Jessica_R; Zwart, Jacob_A; Klug, Jennifer; Bruesewitz, Denise_A; de_Eyto, Elvira; Klaus, Marcus; Knoll, Lesley_B; Rusak, James_A; Vanni, Michael_J; Alfonso, María_Belén; et al (, Limnology and Oceanography)Abstract In lakes, the rates of gross primary production (GPP), ecosystem respiration (R), and net ecosystem production (NEP) are often controlled by resource availability. Herein, we explore how catchment vs. within lake predictors of metabolism compare using data from 16 lakes spanning 39°N to 64°N, a range of inflowing streams, and trophic status. For each lake, we combined stream loads of dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorus (TP) with lake DOC, TN, and TP concentrations and high frequencyin situmonitoring of dissolved oxygen. We found that stream load stoichiometry indicated lake stoichiometry for C : N and C : P (r2 = 0.74 andr2 = 0.84, respectively), but not for N : P (r2 = 0.04). As we found a strong positive correlation between TN and TP, we only used TP in our statistical models. For the catchment model, GPP and R were best predicted by DOC load, TP load, and load N : P (R2 = 0.85 andR2 = 0.82, respectively). For the lake model, GPP and R were best predicted by TP concentrations (R2 = 0.86 andR2 = 0.67, respectively). The inclusion of N : P in the catchment model, but not the lake model, suggests that both N and P regulate metabolism and that organisms may be responding more strongly to catchment inputs than lake resources. Our models predicted NEP poorly, though it is unclear why. Overall, our work stresses the importance of characterizing lake catchment loads to predict metabolic rates, a result that may be particularly important in catchments experiencing changing hydrologic regimes related to global environmental change.more » « less
An official website of the United States government
